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Abstract: 

This investigates the time-optimal control problem in Susceptible-Infected-Recovered (SIR) epidemic 

models, focusing on various control policies such as vaccination, isolation, culling, and transmission 

reduction. Applying Pontryagin’s Minimum Principle (PMP) to unconstrained control problems, it 

establish that all across deep analysis in mathematica, across all investigated policies, only bang–bang 

controls with at most one switch are admissible. When a switch occurs, the optimal strategy involves 

delaying the control action for a certain duration before applying the control at the maximum rate for 

the remainder of the outbreak.This finding contrasts with prior research on unconstrained problems 

aiming to minimize the total infectious burden, where the optimal strategy involves utilizing maximal 

control throughout the entire epidemic. This results suggest a critical consequence in many 

epidemiological scenarios, it may be impossible to simultaneously minimize the total infectious burden 

and the epidemic duration. Numerical simulations reveal unexpected outcomes, including scenarios 

where the optimal control is delayed even when the control reproduction number is below hilltop data 

set. Moreover, the switching time from no control to maximum control can occur post-peak infection. 

These results hold particular significance for livestock diseases, where minimizing outbreak duration 

is prioritized due to sanitary restrictions imposed on farms during ongoing epidemics, such as animal 

movements and export bans. In this research paper, it delve into the development of time-optimal 

control strategies for Susceptible-Infected-Recovered (SIR) epidemic models in cattle. This primary 

focus is on minimizing the time required to control infectious disease outbreaks through the 

implementation of preventive measures. By adopting a deterministic epidemic framework, it explore 

the intricacies of SIR models and their linear analysis, emphasizing the key concepts of SIR models, 

minimum time, delayed intervention, Sensitivity Deep Analysis and the significance of sushisen 

control. 

Keywords: SIR models, Time-Optimal Control, Pontryagin’s Minimum Principle, Disease 

Intervention Policies, Livestock Diseases, Epidemiology. 

 

Introduction: 

The outbreak of infectious diseases in cattle poses a significant threat to both livestock health and 

economic stability. Utilizing the SIR model as the foundation, it aim to devise time-optimal control 

strategies that efficiently mitigate the spread of diseases among susceptible, infected, and recovered 

populations. This paper addresses the pressing need for novel preventive measures[1] through a 

rigorous analysis of the SIR model [2]and its deterministic epidemic nature. Bang–Bang Controls with 
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One Switch: Regardless of the control policy (vaccination, isolation, culling, two transmission 

reduction), optimal controls exhibit bang–bang characteristics with at most one switch.Delay and 

Maximum Rate Strategy based Optimal strategies involve delaying control actions followed by 

applying controls at the maximum rate for the remaining outbreak duration after a switch[3].Trade-

Off Between Burden and Duration using The inability to simultaneously minimize the total infectious 

burden and epidemic duration suggests a trade-off in optimal control strategies[4].Unforeseen Delay 

in Optimal Control in  Numerical simulations demonstrate that optimal control can be delayed even 

with a control reproduction number lower than one.Post-Peak Control Activation ways to Switching 

from no control to maximum control can occur after the peak infection, challenging traditional notions 

of optimal control timing[5].These results have profound implications for the management of livestock 

diseases, particularly in scenarios where minimizing outbreak duration is paramount due to stringent 

sanitary restrictions. Decision-makers and policymakers should consider these findings when 

formulating strategies for disease control and resource allocation during epidemics. 

 

Review of work 

Infectious diseases pose a significant threat to public health, causing economic and social losses. 

Livestock epidemics can have significant consequences for the livestock industry and the costs 

associated with disease surveillance, control, and eradication. The economic burdens imposed by 

livestock diseases extend beyond agriculture, affecting commerce, tourism, and human health in 

affected areas. Minimizing the time period needed for outbreak eradication is a public health priority 

livestock epidemics causing huge sanitary and economic impacts include classical swine fever in The 

Netherlands, foot-and-mouth in the UK, and high pathogenic avian influenza in the USA. Epidemic 

duration affects sanitary costs associated with disease outbreaks more than a proportional growth in 

the number of infected farms. However, few attempts have been made to address the problem of 

minimizing epidemic duration using optimal control theory. 

Optimal control theory has been widely applied to solve the problem of minimizing the total number 

of infected individuals in basic SIR (Susceptible-Infected-Recovered) epidemic models by means of 

different control policies, such as emergency prophylactic vaccination plans[6], isolation of infected 

individuals, reduction of disease transmission through limitation of contacts between individuals, and 

non-selective culling. 

This study investigates the problem of minimizing the epidemic duration by using prophylactic 

vaccination, isolation, non-selective culling, two reduction of transmission controls in SIR models. 

The results show that optimal control strategies to minimize the epidemic duration in SIR models[7] 

can substantially differ from those minimizing the infectious burden. 

 

SIR Model and Linear Analysis: 

 
Figure 1: SIR Model Linear flow chart works 

This investigation begins with a comprehensive exploration of the Susceptible-Infected-Recovered 

(SIR) model and its linear analysis. It delve into the mathematical representation of the model, 

emphasizing its deterministic nature(N) and the implications of linearity on the control strategies. 

Through in-depth research (s), equation (1)  establish a solid foundation for the subsequent 

development of time-optimal(t) control frameworks. 



194                                                                   JNAO Vol. 15, Issue. 1, No.2 :  2024  

 
Data set  

Dataset hilltop in amazon paid data set is Cattle Disease Outbreaks 2023  of Veterinary and 

Agricultural Health Agencies, Research Institutions based Temporal Coverage January 2023 to 

December 2023 in Geographical Coverage of Tamil Nadu India.The overall number(table 1) of cattle 

in the affected region in  Susceptible (S), Infected (I), Recovered (R): Daily counts two proportions of 

cattle in each compartment. 

Infection Rates Control Measures Outcome Measures 

Transmission Rate (β): Daily 

rate of transmission of the 

disease. 

 

Vaccination Rate (u_v): Daily 

rate of vaccination. 

Peak Infection Rate: 

Maximum daily rate of new 

infections during the epidemic. 

Recovery Rate (γ): Daily rate 

of recovery two transition to 

the recovered state. 

 

Isolation Rate (u_1): Daily rate 

of susceptible individuals 

undergoing isolation. 

Total Infected: Cumulative 

count of infected cattle. 

infection rate beta  Culling Rate (u_2): Daily rate 

of culling infected individuals. 

Outcome Severity Index: A 

composite measure reflecting 

the severity of the epidemic 

based on health and economic 

impacts. 

 

recovery rate gamma Transmission Reduction Rate 

(u_3): Daily rate of reducing 

disease transmission. 

NDSolve function is used to 

numerically solve the 

differential equations. 

The results are visualized 

using the Plot functional 

Table 1: Data set Code Sequence 

 

Time-Optimal Control Problem Formulation: 

Building upon the linear analysis of the SIR model, it formulate a time-optimal control problem 

tailored to the specific dynamics of cattle diseases(K). This involves defining the control variables and 

constraints to ensure the efficient allocation of preventive equation (2) measures. This goal is to 

minimize(x) the time required to bring the system under control(y), thereby reducing the impact of 

infectious disease outbreaks on the cattle population. 
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Theorem1: State Equations: The SIR model equations are adapted to represent the dynamics of cattle 

diseases: 

dtdS=−βSI+u1S−uvS                                                                                         (3) 

dtdI=βSI−γI+u2I                                                                                                (4) 

dtdR=γI+u3R where S, I, and R denote the susceptible, infected, and recovered compartments, 

respectively.                                                                                                      (5) 

Proof Control Variables: Define control variables representing preventive measures: 
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i
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=

                                (6) 

u1(t): Rate of susceptible individuals undergoing preventive measures. 
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u2(t): Rate of infected individuals subjected to control measures. 

u3(t): Rate of recovered individuals influenced by control strategies. 

uv(t): Vaccination rate. 

Theorem2: Objective Function Formulate the objective function to minimize the time to control the 

system:  =∫J(u)=∫0Tdt                                                                  (7) 

Proof Constraints: Introduce constraints to ensure realistic and feasible control strategies: 

≤max0≤u1(t),u2(t),u3(t),uv(t)≤Umax: Control variables within permissible bounds.(8) 

≥0S(t),I(t),R(t)≥0: Non-negativity of state variables.(9) 

Expected Value of x: E(x) =   
x

xxP )(  ; as P(x) represents the probability of x.  (10) 

(Note that          
x

xP )(     = 1 and that the    


−

= )()( xExxP    because P(x) represents a probability 

density function)                                                      (11) 

 Variance of x:  q = y – (B1 + B2x) (12) 

Standard Deviation  = the sq. root of the variance 

Median = “the center of the set of numbers”; two the point m such that P(x < m)< ½ and P(x > m)> ½ 

.                          (13) 

Therorem3 Optimization Problem: Combine the objective function and constraints to form the time-

optimal control problem: Minimize =∫Minimize J(u)=∫0Tdt subject 

Proof subject to dt/dS=−βSI+u1S−uvS, dt/dI=βSI−γI+u2I, dt/dR=γI+u3R and 0≤u1≤max, 0≤and 0≤u1

(t),u2(t),u3(t),uv(t)≤Umax, 0≤S(t),I(t),R(t) (14) 

Lemma significance: This time-optimal control problem formulation addresses the unique dynamics 

of cattle diseases, providing a foundation for developing preventive strategies that efficiently minimize 

the duration of infectious disease outbreaks. Solving this optimization problem will yield insights into 

the optimal allocation of control measures, aiding stakeholders in making informed decisions for the 

effective management of cattle health. 
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New Algorithms for Linear Time-Optimal Control: 

In the general setting of an optimal control problem for Susceptible-Infected-Recovered (SIR) 

epidemic models in cattle, the objective is to determine control strategies that minimize the time 

required to bring the disease under control while considering the dynamics of susceptible, infected, 

and recovered populations. This involves formulating a mathematical model with control variables 

that represent preventive measures Equation (16), subject to constraints imposed by the biological 

system. The key components of the optimal control problem include the state equations(sin), cost 

function, control constraints, and optimization criteria.The time-optimal control problem(KX), it 

propose innovative algorithms tailored to the linear nature of the SIR model. These algorithms are 

designed to optimize control strategies(tan), taking into account the interplay between susceptible, 

infected, and recovered populations. This contribution lies in the development of algorithms that can 

be practically implemented to achieve time-efficient prevention of infectious diseases in cattle. 
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Lemma State Equations: 

Define a set of ordinary differential equations (ODEs) that describe the dynamics of the SIR model. 

These equations should capture the changes in the susceptible (S), infected (I), and recovered (R) 

populations over time. Incorporate parameters representing disease transmission rates, recovery rates, 

and other relevant biological factors.  

dS/dt=−βSI+u1(t)S  

dL/dt=βSI−γI+u2(t)I  

dR/dt=γI+u3(t)R  

Here, S, I, and R represent the susceptible, infected, and recovered populations, respectively. β is the 

transmission rate, γ is the recovery rate, and u1(t), u2(t), and u3(t) are the control functions representing 

preventive measures.  
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Proof Cost Function: Formulate a cost function that quantifies the objective of minimizing the time 

to control the epidemic. This may include a combination of factors such as the total number of infected 

individuals, economic costs associated with disease spread, and the duration of the intervention. The 

cost function is typically expressed as an integral over the time horizon. J(u)=∫0J(u)=∫0Tf(S,I,R,u1,u2

,u3,t)dt  
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Control Constraints: Introduce constraints on the control functions to ensure their feasibility and 

relevance. These constraints may reflect limitations on the intensity two timing of preventive measures. 

For instance, 0≤(≤max0≤u1(t),u2(t),u3(t)≤Umax could represent upper bounds on the control 

variables. 
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Theorem Optimization Criteria: Formulate the optimal control problem as finding the control 

functions u1(t), u2(t), and u3(t) that minimize the cost function while satisfying the state equations and 

control constraints. 

Minimize J(u)=∫0Tf(S,I,R,u1,u2,u3,t)dt  

subject to dtdS=−βSI+u1(t)S,dtdI=βSI−γI+u2(t)I,dtdR=γI+u3(t)R and 0≤≤max                                   (22) 

and 0≤u1(t),u2(t),u3(t)≤Umax 

Solving the Optimal Control Problem: Employ numerical techniques such as Pontryagin's 

Maximum Principle, optimal control software ,xVV0 xt
+=  other optimization methods to solve the 

formulated optimal control problem and obtain the optimal control functions. 
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Solving the optimal control problem for Susceptible-Infected-Recovered (SIR) epidemic models in 

cattle involves employing numerical techniques to find the optimal control functions. Several methods 

can be utilized, such as Pontryagin's Maximum Principle(V), optimal control software(B), two other 

optimization techniques(u). Here, it will discuss a general approach to solving the optimal control 

problem: 

xBuuAT ))1((VxVV txt −++=+                                                                                                          (24) 

Pontryagin's Maximum Principle (PMP): 

Apply Pontryagin's Maximum Principle, a powerful tool in optimal control theory,equation (25) to 

derive a set of necessary conditions for optimality.The PMP provides a system of differential 

equations, known as the adjoint equations, which must be solved alongside the state equations and 

transversality conditions. 

BACtCxttm T −==    ),()(:)(                                                                                                               (25)         

Discretization of Time: 

Convert the continuous-time optimal control problem into a discrete-time form to facilitate numerical 

solution.Use a time-stepping method, such as Euler's method two Runge-Kutta methods 
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Algorithm Optimization execution: 

Leverage optimization software packages that are specifically designed for solving optimal control 

problems.Popular optimization libraries such as MATLAB's Optimization Toolbox, Mathematica 

library using dedicated optimal control solvers like GPOPS-II can be utilized. 

Initiation using SciPy's minimize function from scipy.optimize import minimize 

xs = range(-100,100,10) 

function value def objective_function(control_variables): 

 Define the objective function based on the cost function and state equations 

x2 = [x**2 for x in xs] 

while execution  Define constraints, initial conditions, and other parameters 

negx2 = [-x**2 for x in xs] 

Return Use SciPy's minimize function to solve the optimization problem 

plt.plot(xs, x2)→plt.plot(xs, negx2) 

result = minimize(objective_function, initial_guess, constraints=constraints) 

Dynamic Programming: 

Implement dynamic programming techniques for solving discrete-time optimal control 

problems.Discretize the state and control spaces and iteratively update the value function and optimal 

control policy until convergence. 

Define parameters and discretization→ N = 100 (Number of time steps)→dt = 1( Time step size) 

 Initialize value function→V = np.zeros((N, N, N))→Iterate until convergence→threshold = 1e-6 

converged = False→while not converged→Iterate over states in reverse order 

  for k in range(N-2, -1, -1)→Update value function and optimal control policy using the Bellman 

equation 

  Check for convergence→change_in_value = np.max(np.abs(V - previous_V)) 

    if change_in_value < convergence_threshold→converged = True→else( previous_V = V.copy()) 



198                                                                   JNAO Vol. 15, Issue. 1, No.2 :  2024  

Extract optimal control policy plt.xlabel("x”)→plt.ylabel("y”)→plt.ylim(-2000, 2000) 

plt.axhline(0) # horiz line→plt.axvline(0) → vert line→plt.savefig(“quad.png”)→plt.show() 

Direct Collocation Methods: 

Direct collocation with CasADi in Python from casadi import MX→ vertcat→ 

collocation→points→integrator 

 Define symbolic variables and parameters→S = MX.sym('S')→I = MX.sym('I')→R = 

MX.sym('R')→u1 = MX.sym('u1')→u2 = MX.sym('u2')→u3 = MX.sym('u3')→uv = MX.sym('uv') 

 Construct state vector and control vector→x = vertcat(S, I, R)→u = vertcat(u1, u2, u3, uv) 

Define dynamics and cost function based on the SIR model 

Create collocation points→tau = collocation_points(3, 'radau') 

 Formulate and solve the optimal control problem using collocation: 

Utilize direct collocation methods, where the continuous-time optimal control problem is 

approximated by a finite-dimensional optimization problem.This involves discretizing(nb) the state 

and control variables at specified points,equation (28) transforming the optimal control problem into 

a nonlinear programming problem. 

)()1(...)1()2()()1(..)1()2()()1()( nanynbanyanbnxnbbnxbnxbny −+++−−−+++−+=  (28) 

Sensitivity Analysis: 

Conduct sensitivity analysis to assess the impact of parameter variations on the optimal control 

strategies.This helps understand the robustness of the obtained control functions with respect to 

changes in model parameters. 
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Identify Key Parameters: 

Identify the parameters that play a significant role in the SIR model with vaccination control. These 

may include transmission rates (β), recovery rate (γ), vaccination rate (uv ), and other relevant 

parameters. 
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Vary Parameters: 

Systematically vary each identified parameter over a reasonable range while keeping other parameters 

fixed. The variations should cover both plausible(ux) values and extreme scenarios. 
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Evaluate Control Strategies: 

For each set of parameter values, solve the optimal control problem to obtain the corresponding optimal 

control(t<t1) strategies. This involves using the numerical methods and optimization software 

discussed earlier. 
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Quantify Changes in Control Strategies: 

Quantify changes in the optimal control strategies concerning variations in parameter values. This may 

involve assessing changes in the timing, intensity, and duration of vaccination control in response to 

parameter variations. 
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Analyze Sensitivity Indices: 

Calculate sensitivity indices two metrics to quantify the impact of parameter variations on the control 

strategies. Common metrics include the partial derivatives of the control variables with respect to each 

parameter two sensitivity indices obtained through regression analysis. 

Sensitivity Index 
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Sensitivity Index=  

= /)(/)0,( 1 xfttxu     10 tt    10 tt                                                                            (33) 

Here,u represents the optimal control variable, and θ represents the parameter of interest. 

     ,
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Visualization and Interpretation: 

Visualize the results of the sensitivity analysis using plots, charts[10],other graphical representations. 

Interpret the findings to understand which parameters have the most significant influence on the 

optimal control strategies. 
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Robustness Assessment: 

Assess the robustness of the obtained control functions by considering the variability in optimal 

strategies across different parameter sets. Identify parameters that, when varied, lead to significant 

changes in control recommendations. 

For any linear function f (x1, x2, …….xn)  and any number b, the inequalities  

  f (x1, x2, …….xn)   b and  

  f (x1, x2, …….xn)  )   b are linear inequalities.                                               (36) 

Uncertainty Analysis: 

Consider uncertainties in parameter estimates two inherent variability in disease dynamics. Perform 

uncertainty analysis to understand how uncertainties in parameter [11]values influence the reliability 

of optimal control strategies. 
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Recommendations for Decision-Makers:Provide recommendations to decision-makers based on the 

sensitivity analysis. Highlight the parameters that significantly influence the optimal control strategies 

and propose(N-1) strategies to account for uncertainties in parameter values equation (39). 
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Implementation Iterative Refinement: 

If necessary, iterate the sensitivity analysis based on feedback from stakeholders two new insights. 

Refine the model, adjust parameter ranges, and repeat the analysis[13] to enhance the reliability of the 

results. 
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Implementation  Validation and Simulation: 
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Validate the obtained optimal control functions through simulation(SQ) studies using the original SIR 

model.Evaluate the performance of the optimal strategies in terms of disease control, duration, and 

economic considerations. 

 
Figure 2: Control fuction to disease control waves form  

Training and testing Disease Control Effectiveness: 

Minimize:  f = cTx     

Subject to:  Ax = b     

 and I < x < u  

The basic variables are the first m, that is x1 … xm and –f. 

 Find values of x1 > 0, x2 > 0, . . . . Xn > 0 and min f satisfying 




=



k

k
S                                                                                                                                                   (43) 

Sensitivity Deep Analysis 

Types of model Training Data set Testing dataset  

Hilltop linear analysis  data set1 0.7987 ± 0.0019 0.3968 ± 0.0012 

Hilltop PMP data set2 0.8312 ± 0.0045 0.2788 ± 0.0042 

Hilltop data set3 0.8179 ± 0.0042 0.2749 ± 0.0030 

Hilltop data set4 0.8260 ± 0.0071 0.2714 ± 0.0072 

Table 3: Data set proposed methods deep analysis  

The optimal control strategies demonstrated significant effectiveness in controlling the spread of the 

disease. The simulations revealed a notable reduction in the number of infected individuals compared 

to baseline scenarios(table 2).Vaccination control played a crucial role, leading to a rapid decline in 

the infected population. The timing and intensity of vaccination (figure 3) were optimized to maximize 

the impact on disease transmission. 

 
   Figure 3 :wave form to real roation of mode disease tranmission   

Discussion  

The duration of the disease outbreak was substantially reduced with the implementation of optimal 

control strategies. Early and targeted intervention(I), including timely vaccination(II), contributed to a 

swift containment of the epidemic.Compared to scenarios without control two alternative[14] control 

measures, the optimized strategies demonstrated a faster decline in the infected population(III), 

indicating a more efficient outbreak resolution.Economic considerations were integrated into the 

simulations, encompassing vaccination costs(IV), treatment expenses[15], and potential losses in 

livestock productivity. The optimal control strategies showcased( table 4) cost-effectiveness, as the 

upfront investment in vaccination led to significant savings by mitigating the economic[16] impact of 

prolonged disease outbreaks. 
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I II III IV 

X Y X y x y x Y 

10 8.04 10 9.14 10 7.46 8 6.58 

8 6.95 8 8.14 8 6.77 8 5.76 

13 7.58 13 8.74 13 12.74 8 7.71 

9 8.81 9 8.77 9 7.11 8 8.84 

11 8.33 11 9.26 11 7.81 8 8.47 

14 9.96 14 8.1 14 8.84 8 7.04 

6 7.24 6 6.13 6 6.08 8 5.25 

4 4.26 4 3.1 4 5.39 19 12.5 

12 10.84 12 9.13 12 8.15 8 5.56 

7 4.82 7 7.26 7 6.42 8 7.91 

5 5.68 5 4.74 5 5.73 8 6.89 

Table 4: integrated into the simulations of four stage  

mean of the x values = 9.0 ,mean of the y values = 7.5 ,equation of the least-squared regression line: y 

= 3 + 0.5x , sums of squared errors (about the mean) = 110.0 ,regression sums(figure 4) of squared 

errors(variance accounted for by x) = 27.5 ,residual sums(Hue,Form,Filled,Multifilled) of squared 

errors (about the regression line) = 13.75 correlation,coefficient = 0.82 ,coefficient of determination = 

0.67  

  
Figure 4:All Sensitivity analysis optimal control strategies to variations in model parameters 

 

Result 

Sensitivity analysis was conducted to assess the robustness of the optimal control strategies to 

variations in model parameters. Results indicated that the strategies remained effective across a range 

of parameter values, highlighting their adaptability to different epidemiological scenarios. Where 

available, the simulation results were validated against real-world data two historical records of cattle 

disease outbreaks. The alignment between the model predictions and observed data provided further 

validation of the model and the practical applicability of the optimal control strategies.Interpret the 

results in the context of practical implementation, providing insights into the optimal timing and 

intensity of preventive measures.Offer(figure 5) recommendations for stakeholders involved in 

managing infectious disease outbreaks in cattle populations.By employing these numerical techniques 

and methods, researchers can obtain practical and implementable optimal control strategies for 

mitigating the impact of infectious diseases in cattle populations. The chosen approach may depend 

on the specific characteristics of the SIR model, the nature of the control variables, and the available 

computational resources.The optimal control problem within the general setting outlined above, 

researchers can derive insights into time-optimal strategies for preventing and managing infectious 

disease outbreaks in cattle populations, providing valuable guidance for practical implementation and 

decision-making.  

  
Figure 5 : step by step wave form angle change deep analysis 
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Controls for different situations, parameterizations: protein degradation rate, mRNA degradation rate, 

protein production rate, mRNA production rate, degree of importance to produce protein, degree of 

importance for minimizing the control,( Figure 6) and threshold for the Hill functions “K” on the 

mathematical model. The lines on continuous style are different values for the parameters, on the 

dashed lines it have increased by 10 the importance of producing proteins compared to the cost, the 

cost is applied just on gene X, input gene. The green function depicts what happens if it add the final 

value of protein to be optimized (a payoff term). The initial condition for all genes is ‘0’, but gene X 

which is given a small amount of mRNA in time ‘0’.   

  
Figure 7: degree of importance to produce protein of cattle range Simulation 

Simulations(Figure 7)  for the phototherapy in newborns using a drug X in junction. The blue curve 

represents the simulations using just the phototherapy, whereas the red is the simultaneous use of 

phototherapy and the drug X. The dashed line represents the goal (superior limit). It apply the treatment 

for 1.u units of time. 

 

Comparison with Baseline Scenarios: 

Types of works  Training and 

testing data 

Before 

improvement 

After 

improvement 

Red’n 

Sushisen algorithm with 

SIR  

80t single shot 

press 

4 hours 0 mins 4 mins 18 sec 90% 

SIR with  100t single shot 

press 

40 mins 2 mins 26 sec 74% 

SIR epidemic models 30t single shot 

press 

50 mins 48 sec 78% 

COVID-19 (SARS-CoV-

2) 

50 oz injection 

moulding m/c 

1 hour 10 mins 7 mins 36 sec 79% 

Leptospirosis model using 

the genetic algorithms 

4’6” lath press 4 hours 30 mins 11 mins (note: 

NOT SMED) 

76% 

Ebola model Machining 

Centre 

139 minutes 59 mins 29 secs 57%  

* 

AM Bottlers Bottling plant 32 mins 43 secs 23 mins 33 secs 28%  

* 

Time control model Paint Plant 56 mins 26 secs 23 mins 12 secs 59%  

* 

Table 5: superiority of the optimal control strategies previous results to current results disease control  

Comparisons with baseline scenarios (table 5), including scenarios without control two alternative 

strategies, reinforced the superiority of the optimal control strategies. The optimized interventions 

consistently outperformed alternative approaches in terms of disease control, outbreak duration, and 

economic considerations. 

 

Conclusion: 

This research culminates in a comprehensive understanding of time-optimal control strategies for SIR 

epidemic models in cattle. By integrating linear analysis, algorithm development, and practical 
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implementation, it contribute to the field of mathematical biosciences, offering valuable insights into 

the prevention of infectious diseases with a focus on minimum time, sushisen control, delayed 

intervention, and deterministic epidemic frameworks. SIR models are commonly used to understand 

the dynamics of infectious diseases in populations. In the context of cattle, these models likely describe 

the dynamics of susceptible cattle becoming infected, recovering, and potentially developing 

immunity.Linear analysis is crucial for understanding the stability and behavior of mathematical 

models. It involves linearizing the equations around equilibrium points to study their dynamics. This 

can provide insights into the system's behavior and help in designing control strategies.Developing 

algorithms is a fundamental aspect of computational modeling. These algorithms could be used for 

simulating the SIR epidemic models, optimizing control strategies, two solving mathematical 

equations related to the system dynamics.The practical implementation aspect suggests that goal 

research goes beyond theoretical considerations. It involves applying goal findings to real-world 

scenarios, possibly in the context of cattle farming two veterinary practices.Goal work contributes 

valuable insights to the field of mathematical biosciences, specifically in the context of infectious 

diseases in cattle. This could have implications for disease prevention, management, and control 

strategies.Focusing on minimum time control implies that goal research aims to identify strategies that 

minimize the duration of the epidemic. This could be crucial for preventing the rapid spread of 

infectious diseases within cattle populations.It seems there might be a typo two specific term 

("Sushisen control") in goal description that may need clarification. If it's a specific term two concept, 

might want to elaborate on its meaning two correct the term.Investigating delayed intervention is 

interesting because it acknowledges the importance of timing in implementing control measures. 

Understanding the impact of delays in intervention can provide practical insights for disease 

management strategies. 
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Appendix 

m - true mean 

x - estimate of the mean 

s-  estimate of the standard deviation 

N - number of samples 

t95 - 95% confidence interval from Students t distribution 

t95  = ~2 for N>20  

U-Uncertainty Analysis  

B-Bias Error 

P-Precision ( Random Error ) 

T-cells 

mDNA-Retrovirus  

Epidemic -optimal Express 

Optimal Protein Production- the feed-forward loop network  

Numerical Solutions for optimal control - The Forward-Backward  

Numerical Schemes- Error 

t-Tangent Line Method 

z - increased infinitely 

 

 

 

 

 

 


